MATH SOLVE

2 months ago

Q:
# What is an equation for the linear function whose graph contains the points (−1, −2) and (3, 10) ? Enter your answers in the boxes. y+ = (x+1)

Accepted Solution

A:

[tex]\bf \begin{array}{ccccccccc}
&&x_1&&y_1&&x_2&&y_2\\
% (a,b)
&&(~{{ -1}} &,&{{ -2}}~)
% (c,d)
&&(~{{ 3}} &,&{{ 10}}~)
\end{array}
\\\\\\
% slope = m
slope = {{ m}}\implies
\cfrac{\stackrel{rise}{{{ y_2}}-{{ y_1}}}}{\stackrel{run}{{{ x_2}}-{{ x_1}}}}\implies \cfrac{10-(-2)}{3-(-1)}\implies \cfrac{10+2}{3+1}
\\\\\\
\cfrac{12}{4}\implies \cfrac{3}{1}\implies 3[/tex]

[tex]\bf \stackrel{\textit{point-slope form}}{y-{{ y_1}}={{ m}}(x-{{ x_1}})}\implies y-(-2)=3[x-(-1)] \\\\\\ y+2=3(x+1) \implies y+2=3x+3\implies y=3x+1[/tex]

[tex]\bf \stackrel{\textit{point-slope form}}{y-{{ y_1}}={{ m}}(x-{{ x_1}})}\implies y-(-2)=3[x-(-1)] \\\\\\ y+2=3(x+1) \implies y+2=3x+3\implies y=3x+1[/tex]